所述有序控制纳米纤维分子排序的气泡静电纺丝装置还包括鼓风装置,所述鼓风装置与所述进气口连通。进一步地,所述导气管和所述溶液输运管的内部为圆形。进一步地,所述导气管和所述溶液输运管的内部为矩形,所述导气管和所述溶液输运管的矩形短边均小于3mm。进一步地,所述导气管矩形短边为2mm和所述溶液输运管的矩形短边为1mm。进一步地,所述高压静电装置的正极与所述溶液输送管连接,所述高压静电装置的负极与所述接收装置连接。进一步地,所述溶液输送管为金属管,所述溶液输送管的数量为2根,所述溶液输送管的高度为15cm。进一步地,所述接收装置为滚筒式接收装置或平板式接收装置。进一步地,所述导气管和所述溶液输运管的外壁为矩形。本实用新型的有益效果在于:本实用新型涉及的有序控制纳米纤维分子排序的气泡静电纺丝装置通过喷头装置的长度和细度控制大分子的运输过程,通过长程内持久的层流使大分子有序,控制纳米纤维中分子的方向,提高了纤维的结晶度,从而优化材料的各项性能。上述说明*是本实用新型技术方案的概述,为了能够更清楚了解本实用新型的技术手段,并可依照说明书的内容予以实施,以下以本实用新型的较佳实施例并配合附图详细说明如后。静电纺丝法的内部影响因素主要由溶液的各项参数造成,例如溶液的粘度,导电性能和表面张力。辽宁大规模静电纺丝
随着电压的增加,在针尖部聚集的液滴越小,形成的“Taylor锥”后退,液体表面喷射点退缩到针尖的内部,纺丝纤维会出现大量的珠子。当电压继续增加的时候,喷射点围绕针尖处旋转,在这种情况下会形成大量的珠子。改变收集屏和针头之间的距离是控制纤维的直径和形态的手段之一。当收集屏的距离过远或过近时,纺丝纤维均会出现珠子。电纺丝用针尖可以有很多样式。如在两个喷射器中注入两种不相溶的液体,应用这种方法可以纺出中空的纳米纤维。应用这种喷丝头也可以制造芯-壳型复合纳米纤维。此外,在电纺丝过程中应用多喷头技术,可以提高纺丝的效率,也可用于制备多种纳米纤维混合的薄膜。例如应用四个喷头,可以纺织出不同组成的纤维;利用两个针头,一个可以横向移动的收集屏,可以制成两种纳米纤维的混合物,横向移动的收集屏可以形成更加均一的纤维分布。收集屏采用的材料和几何结构都会对纤维形貌产生影响,是重要的控制因素之一。例如电纺丝纤维可用一个旋转的圆筒来接收,这样可以得到定向排列的纤维。把这种方法做进一步的改良,用铜丝缠绕出一个鼓型接收装置,就可以得到定向排列更好的纳米纤维。另外一种方法是用一个钢针作电极。湖南静电纺丝诚信互利江苏飙鲛新材料科技有限公司,着眼于静电纺丝由实验室向大规模量产的转化。
射流会分散开来,形成许多直径相似的细小纤维落在接收屏上,得到具有纳米纤维结构的薄膜材料。**终得到的纤维直径取决于单位长度上的电荷以及射流分散形成纤维的多少。高压静电纺丝技术整个电纺丝过程整个电纺丝过程由多个可变化的参数调控,主要包括溶液的性质、可控变量和周围参数。溶液的性质包括:溶液的黏度、传导性、表面张力、聚合物分子量、偶极距和介电常数;可控变量包括流量、电场力、针头与接收屏之间的距离、针头的形状、接收屏的材料成分和表面形态;周围参数包括:温度、湿度和风速。溶液的粘度是对纤维直径和形态造成影响的**主要因素。在低浓度的条件下,喷射出的溶液通常会在接收屏上形成珠子和小液滴。整个过程可以看作是电喷而不是电纺。除此之外,还会出现交织、打结情况,提示射流束在落到接收屏上时溶剂未完全挥发。一般来说通过增加聚合物的浓度可以得到直径比较一致的纤维,罕见珠子和交联现象。当溶液的黏度过大时,液滴在没有掉落的时候就已经干了,也会影响纺丝的进行。当溶液的浓度为缠结浓度的2~,可以得到均一的,没有珠子的纤维。电纺丝纤维的直径随溶液浓度的提高和接受面积的减小而增加。电纺丝纤维的直径分布通常符合单峰分布规律。
医学应用医疗/保健或生物学是用静电纺丝法制备纳米纤维的重要应用之一,并且正飞速的吸引研究人员注意力。—些与再生医学相关的产品已经在海外商业化。日本经济和工业部报告称,2050年全球预计再生医学相关商品的市场规模为1500亿美元,日本为130亿美元。此外,还预计,2050年全球范围内,主要使用纳米纤维医疗材料(如培养基和支架)的销售额将达到347亿美元。这表明纳米纤维在医学领域中的应用将在未来得到迅猛发展及***运用。在环境工程领域中,纳米纤维是众所周知的产品,例如过滤器或口罩。利用其高性能过滤,使用由纳米纤维制成的水处理过滤器可以高效地消除目标分子。此外,全球正在开发能够捕获非常小颗粒的口罩,如,以保护人类免受严重的空气污染。在目前全球肆虐是静电纺丝生产出的口罩及防护服的防护效果**高于常规制法。作为应用之一,用于消除铯的过滤器正在开发中。通过将纳米纤维无纺布层与熔喷无纺布结合起来。 静电纺丝法制备的纳米纤维除了具有光滑表面特性之外,还适用于制备具有多孔、中空、核壳等特殊结构纤维。
氧化铝基陶瓷纤维因其高温稳定性好和抗拉强度高等优点,作为绝热防护材料和增强材料广泛应用于冶金、机械、航天、石油、化工等领域,其开发和应用一直是材料研究领域的热点[1-3]。纤维直径是氧化铝基陶瓷纤维的重要技术指标,减小纤维直径有利于获得绝热性与柔韧性更好的纤维制品,而且直径减小至纳米尺度的氧化铝基陶瓷纤维更是一类发展潜力巨大的功能材料[4-5]。然而,传统的陶瓷纤维生产工艺,如喷吹成丝法、甩丝法、挤压-拉丝法等均不能生产出直径在1μm以下的超细陶瓷纤维[6-7]。近年来,许多学者采用了静电纺丝与溶胶-凝胶法相结合的方法制备出了纳米级氧化铝基陶瓷纤维,其基本流程如下:将铝盐水解形成的铝溶胶与高分子聚合物助剂混合制成纺丝液,纺丝液经静电纺丝得到聚合物/无机溶胶复合纤维,复合纤维经过烧结得到纳米陶瓷纤维[8-10]。TANG等[11]以异丙醇铝为铝源采用静电纺丝法制得直径为60~90nm的α-氧化铝纤维,但纤维表面粗糙且存在大量微孔。ZADEH等[12]通过向纺丝液中添加不同用量聚乙烯醇制得直径为100~300nm的莫来石纤维,但该纤维中有大量珠链结构。TANRIVERDI等[13]以异丙醇铝、正硅酸乙酯和硼酸三乙酯为原料。静电纺丝时湿度继续上升会导致纤维表面上孔的数目增加。辽宁大规模静电纺丝
静电纺丝法制备的纳米纤维用途***辽宁大规模静电纺丝
静电纺无机纳米纤维的研究基本处于起始阶段,无机纳米纤维在高温过滤、高效催化、生物组织工程、光电器件、航天器材等多个领域具有潜在的用途,但是,静电纺无机纳米纤维较大的脆性限制了其应用性能和范围,因此,开发具有柔韧性、连续性的无机纤维是一个重要的课题。静电纺丝技术的应用随着纳米技术的发展,静电纺丝作为一种简便有效的可生产纳米纤维的新型加工技术,将在生物医用材料、过滤及防护、催化、能源、光电、食品工程、化妆品等领域发挥巨大作用。①在生物医学领域,纳米纤维的直径小于细胞,可以模拟天然的细胞外基质的结构和生物功能;人的大多数组织、在形式和结构上与纳米纤维类似,这为纳米纤维用于组织和的修复提供了可能;一些电纺原料具有很好的生物相容性及可降解性,可作为载体进入人体,并容易被吸收;加之静电纺纳米纤维还有大的比表面积、孔隙率等优良特性。辽宁大规模静电纺丝
江苏飙鲛新材料科技有限公司是一家有着雄厚实力背景、信誉可靠、励精图治、展望未来、有梦想有目标,有组织有体系的公司,坚持于带领员工在未来的道路上大放光明,携手共画蓝图,在江苏省等地区的机械及行业设备行业中积累了大批忠诚的客户粉丝源,也收获了良好的用户口碑,为公司的发展奠定的良好的行业基础,也希望未来公司能成为行业的翘楚,努力为行业领域的发展奉献出自己的一份力量,我们相信精益求精的工作态度和不断的完善创新理念以及自强不息,斗志昂扬的的企业精神将引领江苏飙鲛新材料科技供应和您一起携手步入辉煌,共创佳绩,一直以来,公司贯彻执行科学管理、创新发展、诚实守信的方针,员工精诚努力,协同奋取,以品质、服务来赢得市场,我们一直在路上!